skip to main content


Search for: All records

Creators/Authors contains: "Harrison, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Performing multiple reaction steps in “one pot” to avoid the need to isolate intermediates is a promising approach for reducing solvent waste associated with liquid phase chemical processing. In this work, we incorporated gold nanoparticle catalysts into polymer nanoreactors via amphiphilic block copolymer directed self-assembly. With the polymer nanoreactors dispersed in water as the bulk solvent, we demonstrated the ability to facilitate two reaction steps in one pot with spontaneous precipitation of the product from the reaction mixture. Specifically, we achieved imide synthesis from 4-nitrophenol and benzaldehyde as a model reaction. The reaction occured in water at ambient conditions; the desired 4-benzylideneaminophenol product spontaneously precipitated from the reaction mixture while the nanoreactors remained stable in dispersion. A 65% isolated yield was achieved. In contrast, PEGylated gold nanoparticles and citrate stabilized gold nanoparticles precipitated with the reaction product, which would complicate both the isolation of the product as well as reuse of the catalyst. Thus, amphiphilic nanoreactors dispersed in water are a promising approach for reducing solvent waste associated with liquid phase chemical processing by using water as the bulk solvent, eliminating the need to isolate intermediates, achieving spontaneous product separation to facilitate the recycling of the reaction mixture, and simplifying the isolation of the desired product. 
    more » « less
  2. null (Ed.)
    Performing reactions in the presence of self-assembled hierarchical structures of amphiphilic macromolecules can accelerate reactions while using water as the bulk solvent due to the hydrophobic effect. We leveraged non-covalent interactions to self-assemble filled-polymer micelle nanoreactors (NR) incorporating gold nanoparticle catalysts into various amphiphilic polymer nanostructures with comparable hydrodynamic nanoreactor size and gold concentration in the nanoreactor dispersion. We systematically studied the effect of the hydrophobic co-precipitant on self-assembly and catalytic performance. We observed that co-precipitants that interact with gold are beneficial for improving incorporation efficiency of the gold nanoparticles into the nanocomposite nanoreactor during self-assembly but decrease catalytic performance. Hierarchical assemblies with co-precipitants that leverage noncovalent interactions could enhance catalytic performance. For the co-precipitants that do not interact strongly with gold, the catalytic performance was strongly affected by the hydrophobic microenvironment of the co-precipitant. Specifically, the apparent reaction rate per surface area using castor oil (CO) was over 8-fold greater than polystyrene (750 g/mol, PS 750); the turnover frequency was higher than previously reported self-assembled polymer systems. The increase in apparent catalytic performance could be attributed to differences in reactant solubility rather than differences in mass transfer or intrinsic kinetics; higher reactant solubility enhances apparent reaction rates. Full conversion of 4-nitrophenol was achieved within three minutes for at least 10 sequential reactions demonstrating that the nanoreactors could be used for multiple reactions. 
    more » « less
  3. Self-assembled metal nanoparticle-polymer nanocomposite particles as nanoreactors are a promising approach for performing liquid phase reactions using water as a bulk solvent. In this work, we demonstrate rapid, scalable self-assembly of metal nanoparticle catalyst-polymer nanocomposite particles via Flash NanoPrecipitation. The catalyst loading and size of the nanocomposite particles can be tuned independently. Using nanocomposite particles as nanoreactors and the reduction of 4-nitrophenol as a model reaction, we study the fundamental interplay of reaction and diffusion. The induction time is affected by the sequence of reagent addition, time between additions, and reagent concentration. Combined, our experiments indicate the induction time is most influenced by diffusion of sodium borohydride. Following the induction time, scaling analysis and effective diffusivity measured using NMR indicate that the observed reaction rate are reaction- rather than diffusion-limited. Furthermore, the intrinsic kinetics are comparable to ligand-free gold nanoparticles. This result indicates that the polymer microenvironment does not de-activate or block the catalyst active sites. 
    more » « less